USB_Host_Shield_2.0/examples/board_qc/board_qc.ino

259 lines
13 KiB
C++

/* USB Host Shield 2.0 board quality control routine */
/* To see the output set your terminal speed to 115200 */
/* for GPIO test to pass you need to connect GPIN0 to GPOUT7, GPIN1 to GPOUT6, etc. */
/* otherwise press any key after getting GPIO error to complete the test */
/**/
#include <usbhub.h>
// Satisfy the IDE, which needs to see the include statment in the ino too.
#ifdef dobogusinclude
#include <spi4teensy3.h>
#include <../../../../hardware/pic32/libraries/SPI/SPI.h> // Hack to use the SPI library
#include <SPI.h> // Hack to use the SPI library
#endif
/* variables */
uint8_t rcode;
uint8_t usbstate;
uint8_t laststate;
//uint8_t buf[sizeof(USB_DEVICE_DESCRIPTOR)];
USB_DEVICE_DESCRIPTOR buf;
/* objects */
USB Usb;
//USBHub hub(&Usb);
void setup() {
laststate = 0;
Serial.begin(115200);
#if !defined(__MIPSEL__)
while(!Serial); // Wait for serial port to connect - used on Leonardo, Teensy and other boards with built-in USB CDC serial connection
#endif
E_Notify(PSTR("\r\nCircuits At Home 2011"), 0x80);
E_Notify(PSTR("\r\nUSB Host Shield Quality Control Routine"), 0x80);
/* SPI quick test - check revision register */
E_Notify(PSTR("\r\nReading REVISION register... Die revision "), 0x80);
Usb.Init(); // Initializes SPI, we don't care about the return value here
{
uint8_t tmpbyte = Usb.regRd(rREVISION);
switch(tmpbyte) {
case( 0x01): //rev.01
E_Notify(PSTR("01"), 0x80);
break;
case( 0x12): //rev.02
E_Notify(PSTR("02"), 0x80);
break;
case( 0x13): //rev.03
E_Notify(PSTR("03"), 0x80);
break;
default:
E_Notify(PSTR("invalid. Value returned: "), 0x80);
print_hex(tmpbyte, 8);
halt55();
break;
}//switch( tmpbyte...
}//check revision register
/* SPI long test */
{
E_Notify(PSTR("\r\nSPI long test. Transfers 1MB of data. Each dot is 64K"), 0x80);
uint8_t sample_wr = 0;
uint8_t sample_rd = 0;
uint8_t gpinpol_copy = Usb.regRd(rGPINPOL);
for(uint8_t i = 0; i < 16; i++) {
for(uint16_t j = 0; j < 65535; j++) {
Usb.regWr(rGPINPOL, sample_wr);
sample_rd = Usb.regRd(rGPINPOL);
if(sample_rd != sample_wr) {
E_Notify(PSTR("\r\nTest failed. "), 0x80);
E_Notify(PSTR("Value written: "), 0x80);
print_hex(sample_wr, 8);
E_Notify(PSTR(" read: "), 0x80);
print_hex(sample_rd, 8);
halt55();
}//if( sample_rd != sample_wr..
sample_wr++;
}//for( uint16_t j...
E_Notify(PSTR("."), 0x80);
}//for( uint8_t i...
Usb.regWr(rGPINPOL, gpinpol_copy);
E_Notify(PSTR(" SPI long test passed"), 0x80);
}//SPI long test
/* GPIO test */
/* in order to simplify board layout, GPIN pins on text fixture are connected to GPOUT */
/* in reverse order, i.e, GPIN0 is connected to GPOUT7, GPIN1 to GPOUT6, etc. */
{
uint8_t tmpbyte;
E_Notify(PSTR("\r\nGPIO test. Connect GPIN0 to GPOUT7, GPIN1 to GPOUT6, and so on"), 0x80);
for(uint8_t sample_gpio = 0; sample_gpio < 255; sample_gpio++) {
Usb.gpioWr(sample_gpio);
tmpbyte = Usb.gpioRd();
/* bit reversing code copied vetbatim from http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */
tmpbyte = ((tmpbyte * 0x0802LU & 0x22110LU) | (tmpbyte * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
if(sample_gpio != tmpbyte) {
E_Notify(PSTR("\r\nTest failed. Value written: "), 0x80);
print_hex(sample_gpio, 8);
E_Notify(PSTR(" Value read: "), 0x80);
print_hex(tmpbyte, 8);
E_Notify(PSTR(" "), 0x80);
press_any_key();
break;
}//if( sample_gpio != tmpbyte...
}//for( uint8_t sample_gpio...
E_Notify(PSTR("\r\nGPIO test passed."), 0x80);
}//GPIO test
/* PLL test. Stops/starts MAX3421E oscillator several times */
{
E_Notify(PSTR("\r\nPLL test. 100 chip resets will be performed"), 0x80);
/* check current state of the oscillator */
if(!(Usb.regRd(rUSBIRQ) & bmOSCOKIRQ)) { //wrong state - should be on
E_Notify(PSTR("\r\nCurrent oscillator state unexpected."), 0x80);
press_any_key();
}
/* Restart oscillator */
E_Notify(PSTR("\r\nResetting oscillator\r\n"), 0x80);
for(uint16_t i = 0; i < 100; i++) {
E_Notify(PSTR("\rReset number "), 0x80);
Serial.print(i, DEC);
Usb.regWr(rUSBCTL, bmCHIPRES); //reset
if(Usb.regRd(rUSBIRQ) & bmOSCOKIRQ) { //wrong state - should be off
E_Notify(PSTR("\r\nCurrent oscillator state unexpected."), 0x80);
halt55();
}
Usb.regWr(rUSBCTL, 0x00); //release from reset
uint16_t j = 0;
for(j = 1; j < 65535; j++) { //tracking off to on time
if(Usb.regRd(rUSBIRQ) & bmOSCOKIRQ) {
E_Notify(PSTR(" Time to stabilize - "), 0x80);
Serial.print(j, DEC);
E_Notify(PSTR(" cycles\r\n"), 0x80);
break;
}
}//for( uint16_t j = 0; j < 65535; j++
if(j == 0) {
E_Notify(PSTR("PLL failed to stabilize"), 0x80);
press_any_key();
}
}//for( uint8_t i = 0; i < 255; i++
}//PLL test
/* initializing USB stack */
if(Usb.Init() == -1) {
E_Notify(PSTR("\r\nOSCOKIRQ failed to assert"), 0x80);
halt55();
}
E_Notify(PSTR("\r\nChecking USB device communication.\r\n"), 0x80);
}
void loop() {
delay(200);
Usb.Task();
usbstate = Usb.getUsbTaskState();
if(usbstate != laststate) {
laststate = usbstate;
/**/
switch(usbstate) {
case( USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE):
E_Notify(PSTR("\r\nWaiting for device..."), 0x80);
break;
case( USB_ATTACHED_SUBSTATE_RESET_DEVICE):
E_Notify(PSTR("\r\nDevice connected. Resetting..."), 0x80);
break;
case( USB_ATTACHED_SUBSTATE_WAIT_SOF):
E_Notify(PSTR("\r\nReset complete. Waiting for the first SOF..."), 0x80);
break;
case( USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE):
E_Notify(PSTR("\r\nSOF generation started. Enumerating device..."), 0x80);
break;
case( USB_STATE_ADDRESSING):
E_Notify(PSTR("\r\nSetting device address..."), 0x80);
break;
case( USB_STATE_RUNNING):
E_Notify(PSTR("\r\nGetting device descriptor"), 0x80);
rcode = Usb.getDevDescr(1, 0, sizeof (USB_DEVICE_DESCRIPTOR), (uint8_t*) & buf);
if(rcode) {
E_Notify(PSTR("\r\nError reading device descriptor. Error code "), 0x80);
print_hex(rcode, 8);
} else {
/**/
E_Notify(PSTR("\r\nDescriptor Length:\t"), 0x80);
print_hex(buf.bLength, 8);
E_Notify(PSTR("\r\nDescriptor type:\t"), 0x80);
print_hex(buf.bDescriptorType, 8);
E_Notify(PSTR("\r\nUSB version:\t\t"), 0x80);
print_hex(buf.bcdUSB, 16);
E_Notify(PSTR("\r\nDevice class:\t\t"), 0x80);
print_hex(buf.bDeviceClass, 8);
E_Notify(PSTR("\r\nDevice Subclass:\t"), 0x80);
print_hex(buf.bDeviceSubClass, 8);
E_Notify(PSTR("\r\nDevice Protocol:\t"), 0x80);
print_hex(buf.bDeviceProtocol, 8);
E_Notify(PSTR("\r\nMax.packet size:\t"), 0x80);
print_hex(buf.bMaxPacketSize0, 8);
E_Notify(PSTR("\r\nVendor ID:\t\t"), 0x80);
print_hex(buf.idVendor, 16);
E_Notify(PSTR("\r\nProduct ID:\t\t"), 0x80);
print_hex(buf.idProduct, 16);
E_Notify(PSTR("\r\nRevision ID:\t\t"), 0x80);
print_hex(buf.bcdDevice, 16);
E_Notify(PSTR("\r\nMfg.string index:\t"), 0x80);
print_hex(buf.iManufacturer, 8);
E_Notify(PSTR("\r\nProd.string index:\t"), 0x80);
print_hex(buf.iProduct, 8);
E_Notify(PSTR("\r\nSerial number index:\t"), 0x80);
print_hex(buf.iSerialNumber, 8);
E_Notify(PSTR("\r\nNumber of conf.:\t"), 0x80);
print_hex(buf.bNumConfigurations, 8);
/**/
E_Notify(PSTR("\r\n\nAll tests passed. Press RESET to restart test"), 0x80);
while(1);
}
break;
case( USB_STATE_ERROR):
E_Notify(PSTR("\r\nUSB state machine reached error state"), 0x80);
break;
default:
break;
}//switch( usbstate...
}
}//loop()...
/* constantly transmits 0x55 via SPI to aid probing */
void halt55() {
E_Notify(PSTR("\r\nUnrecoverable error - test halted!!"), 0x80);
E_Notify(PSTR("\r\n0x55 pattern is transmitted via SPI"), 0x80);
E_Notify(PSTR("\r\nPress RESET to restart test"), 0x80);
while(1) {
Usb.regWr(0x55, 0x55);
}
}
/* prints hex numbers with leading zeroes */
void print_hex(int v, int num_places) {
int mask = 0, n, num_nibbles, digit;
for(n = 1; n <= num_places; n++) {
mask = (mask << 1) | 0x0001;
}
v = v & mask; // truncate v to specified number of places
num_nibbles = num_places / 4;
if((num_places % 4) != 0) {
++num_nibbles;
}
do {
digit = ((v >> (num_nibbles - 1) * 4)) & 0x0f;
Serial.print(digit, HEX);
} while(--num_nibbles);
}
/* prints "Press any key" and returns when key is pressed */
void press_any_key() {
E_Notify(PSTR("\r\nPress any key to continue..."), 0x80);
while(Serial.available() <= 0); //wait for input
Serial.read(); //empty input buffer
return;
}