USB_Host_Shield_2.0/BTD.cpp
Andrew J. Kroll 95d133b919 Merge
2013-12-04 18:51:06 -05:00

1285 lines
55 KiB
C++
Executable file

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Kristian Lauszus, TKJ Electronics
Web : http://www.tkjelectronics.com
e-mail : kristianl@tkjelectronics.com
*/
#include "BTD.h"
// To enable serial debugging see "settings.h"
//#define EXTRADEBUG // Uncomment to get even more debugging data
const uint8_t BTD::BTD_CONTROL_PIPE = 0;
const uint8_t BTD::BTD_EVENT_PIPE = 1;
const uint8_t BTD::BTD_DATAIN_PIPE = 2;
const uint8_t BTD::BTD_DATAOUT_PIPE = 3;
BTD::BTD(USB *p) :
connectToWii(false),
pairWithWii(false),
pUsb(p), // Pointer to USB class instance - mandatory
bAddress(0), // Device address - mandatory
bNumEP(1), // If config descriptor needs to be parsed
qNextPollTime(0), // Reset NextPollTime
pollInterval(0),
bPollEnable(false) // Don't start polling before dongle is connected
{
for (uint8_t i = 0; i < BTD_NUMSERVICES; i++)
btService[i] = NULL;
clearAllVariables(); // Set all variables, endpoint structs etc. to default values
if (pUsb) // Register in USB subsystem
pUsb->RegisterDeviceClass(this); // Set devConfig[] entry
}
uint8_t BTD::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR);
uint8_t buf[constBufSize];
USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf);
uint8_t rcode;
UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL;
clearAllVariables(); // Set all variables, endpoint structs etc. to default values
AddressPool &addrPool = pUsb->GetAddressPool(); // Get memory address of USB device address pool
#ifdef EXTRADEBUG
Notify(PSTR("\r\nBTD ConfigureDevice"), 0x80);
#endif
if (bAddress) { // Check if address has already been assigned to an instance
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress in use"), 0x80);
#endif
return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;
}
p = addrPool.GetUsbDevicePtr(0); // Get pointer to pseudo device with address 0 assigned
if (!p) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress not found"), 0x80);
#endif
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
}
if (!p->epinfo) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nepinfo is null"), 0x80);
#endif
return USB_ERROR_EPINFO_IS_NULL;
}
oldep_ptr = p->epinfo; // Save old pointer to EP_RECORD of address 0
p->epinfo = epInfo; // Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence
p->lowspeed = lowspeed;
rcode = pUsb->getDevDescr(0, 0, constBufSize, (uint8_t*)buf); // Get device descriptor - addr, ep, nbytes, data
p->epinfo = oldep_ptr; // Restore p->epinfo
if (rcode)
goto FailGetDevDescr;
bAddress = addrPool.AllocAddress(parent, false, port); // Allocate new address according to device class
if (!bAddress) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nOut of address space"), 0x80);
#endif
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
}
epInfo[0].maxPktSize = udd->bMaxPacketSize0; // Extract Max Packet Size from device descriptor
epInfo[1].epAddr = udd->bNumConfigurations; // Steal and abuse from epInfo structure to save memory
VID = udd->idVendor;
PID = udd->idProduct;
return USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET;
FailGetDevDescr:
#ifdef DEBUG_USB_HOST
NotifyFailGetDevDescr(rcode);
#endif
if (rcode != hrJERR)
rcode = USB_ERROR_FailGetDevDescr;
Release();
return rcode;
};
uint8_t BTD::Init(uint8_t parent, uint8_t port, bool lowspeed) {
uint8_t rcode;
uint8_t num_of_conf = epInfo[1].epAddr; // Number of configurations
epInfo[1].epAddr = 0;
AddressPool &addrPool = pUsb->GetAddressPool();
#ifdef EXTRADEBUG
Notify(PSTR("\r\nBTD Init"), 0x80);
#endif
UsbDevice *p = addrPool.GetUsbDevicePtr(bAddress); // Get pointer to assigned address record
if (!p) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress not found"), 0x80);
#endif
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
}
delay(300); // Assign new address to the device
rcode = pUsb->setAddr(0, 0, bAddress); // Assign new address to the device
if (rcode) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nsetAddr: "), 0x80);
D_PrintHex<uint8_t > (rcode, 0x80);
#endif
p->lowspeed = false;
goto Fail;
}
#ifdef EXTRADEBUG
Notify(PSTR("\r\nAddr: "), 0x80);
D_PrintHex<uint8_t > (bAddress, 0x80);
#endif
p->lowspeed = false;
p = addrPool.GetUsbDevicePtr(bAddress); // Get pointer to assigned address record
if (!p) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nAddress not found"), 0x80);
#endif
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
}
p->lowspeed = lowspeed;
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); // Assign epInfo to epinfo pointer - only EP0 is known
if (rcode)
goto FailSetDevTblEntry;
if (VID == PS3_VID && (PID == PS3_PID || PID == PS3NAVIGATION_PID || PID == PS3MOVE_PID)) {
delay(100);
rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, 1); // We only need the Control endpoint, so we don't have to initialize the other endpoints of device
if (rcode)
goto FailSetConfDescr;
#ifdef DEBUG_USB_HOST
if (PID == PS3_PID || PID == PS3NAVIGATION_PID) {
if (PID == PS3_PID)
Notify(PSTR("\r\nDualshock 3 Controller Connected"), 0x80);
else // It must be a navigation controller
Notify(PSTR("\r\nNavigation Controller Connected"), 0x80);
} else // It must be a Motion controller
Notify(PSTR("\r\nMotion Controller Connected"), 0x80);
#endif
if (my_bdaddr[0] == 0x00 && my_bdaddr[1] == 0x00 && my_bdaddr[2] == 0x00 && my_bdaddr[3] == 0x00 && my_bdaddr[4] == 0x00 && my_bdaddr[5] == 0x00) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nPlease plug in the dongle before trying to pair with the PS3 Controller\r\nor set the Bluetooth address in the constructor of the PS3BT class"), 0x80);
#endif
} else {
if (PID == PS3_PID || PID == PS3NAVIGATION_PID)
setBdaddr(my_bdaddr); // Set internal Bluetooth address
else
setMoveBdaddr(my_bdaddr); // Set internal Bluetooth address
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nBluetooth Address was set to: "), 0x80);
for (int8_t i = 5; i > 0; i--) {
D_PrintHex<uint8_t > (my_bdaddr[i], 0x80);
Notify(PSTR(":"), 0x80);
}
D_PrintHex<uint8_t > (my_bdaddr[0], 0x80);
#endif
}
pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, 0); // Reset configuration value
pUsb->setAddr(bAddress, 0, 0); // Reset address
Release(); // Release device
return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; // Return
} else {
// Check if attached device is a Bluetooth dongle and fill endpoint data structure
// First interface in the configuration must have Bluetooth assigned Class/Subclass/Protocol
// And 3 endpoints - interrupt-IN, bulk-IN, bulk-OUT, not necessarily in this order
for (uint8_t i = 0; i < num_of_conf; i++) {
if (VID == IOGEAR_GBU521_VID && PID == IOGEAR_GBU521_PID) {
ConfigDescParser<USB_CLASS_VENDOR_SPECIFIC, WI_SUBCLASS_RF, WI_PROTOCOL_BT, CP_MASK_COMPARE_ALL> confDescrParser(this); // Needed for the IOGEAR GBU521
rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
} else {
ConfigDescParser<USB_CLASS_WIRELESS_CTRL, WI_SUBCLASS_RF, WI_PROTOCOL_BT, CP_MASK_COMPARE_ALL> confDescrParser(this);
rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser);
}
if (rcode) // Check error code
goto FailGetConfDescr;
if (bNumEP >= BTD_MAX_ENDPOINTS) // All endpoints extracted
break;
}
if (bNumEP < BTD_MAX_ENDPOINTS)
goto FailUnknownDevice;
// Assign epInfo to epinfo pointer - this time all 3 endpoins
rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo);
if (rcode)
goto FailSetDevTblEntry;
// Set Configuration Value
rcode = pUsb->setConf(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bConfNum);
if (rcode)
goto FailSetConfDescr;
hci_num_reset_loops = 100; // only loop 100 times before trying to send the hci reset command
hci_counter = 0;
hci_state = HCI_INIT_STATE;
watingForConnection = false;
bPollEnable = true;
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nBluetooth Dongle Initialized"), 0x80);
#endif
}
return 0; // Successful configuration
/* diagnostic messages */
#ifdef DEBUG_USB_HOST
FailGetDevDescr:
NotifyFailGetDevDescr();
goto Fail;
#endif
FailSetDevTblEntry:
#ifdef DEBUG_USB_HOST
NotifyFailSetDevTblEntry();
goto Fail;
#endif
FailGetConfDescr:
#ifdef DEBUG_USB_HOST
NotifyFailGetConfDescr();
goto Fail;
#endif
FailSetConfDescr:
#ifdef DEBUG_USB_HOST
NotifyFailSetConfDescr();
#endif
goto Fail;
FailUnknownDevice:
#ifdef DEBUG_USB_HOST
NotifyFailUnknownDevice(VID, PID);
#endif
pUsb->setAddr(bAddress, 0, 0); // Reset address
rcode = USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;
Fail:
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nBTD Init Failed, error code: "), 0x80);
NotifyFail(rcode);
#endif
Release();
return rcode;
}
void BTD::clearAllVariables() {
uint8_t i;
for (i = 0; i < BTD_MAX_ENDPOINTS; i++) {
epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0;
epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER;
}
for (i = 0; i < BTD_NUMSERVICES; i++) {
if (btService[i])
btService[i]->Reset(); // Reset all Bluetooth services
}
connectToWii = false;
incomingWii = false;
bAddress = 0; // Clear device address
bNumEP = 1; // Must have to be reset to 1
qNextPollTime = 0; // Reset next poll time
pollInterval = 0;
bPollEnable = false; // Don't start polling before dongle is connected
}
/* Extracts interrupt-IN, bulk-IN, bulk-OUT endpoint information from config descriptor */
void BTD::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *pep) {
//ErrorMessage<uint8_t>(PSTR("Conf.Val"),conf);
//ErrorMessage<uint8_t>(PSTR("Iface Num"),iface);
//ErrorMessage<uint8_t>(PSTR("Alt.Set"),alt);
if (alt) // Wrong interface - by BT spec, no alt setting
return;
bConfNum = conf;
uint8_t index;
if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80) { // Interrupt In endpoint found
index = BTD_EVENT_PIPE;
epInfo[index].bmNakPower = USB_NAK_NOWAIT;
} else {
if ((pep->bmAttributes & 0x02) == 2) // Bulk endpoint found
index = ((pep->bEndpointAddress & 0x80) == 0x80) ? BTD_DATAIN_PIPE : BTD_DATAOUT_PIPE;
else
return;
}
// Fill the rest of endpoint data structure
epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F);
epInfo[index].maxPktSize = (uint8_t)pep->wMaxPacketSize;
#ifdef EXTRADEBUG
PrintEndpointDescriptor(pep);
#endif
if (pollInterval < pep->bInterval) // Set the polling interval as the largest polling interval obtained from endpoints
pollInterval = pep->bInterval;
bNumEP++;
}
void BTD::PrintEndpointDescriptor(const USB_ENDPOINT_DESCRIPTOR* ep_ptr) {
#ifdef EXTRADEBUG
Notify(PSTR("\r\nEndpoint descriptor:"), 0x80);
Notify(PSTR("\r\nLength:\t\t"), 0x80);
D_PrintHex<uint8_t > (ep_ptr->bLength, 0x80);
Notify(PSTR("\r\nType:\t\t"), 0x80);
D_PrintHex<uint8_t > (ep_ptr->bDescriptorType, 0x80);
Notify(PSTR("\r\nAddress:\t"), 0x80);
D_PrintHex<uint8_t > (ep_ptr->bEndpointAddress, 0x80);
Notify(PSTR("\r\nAttributes:\t"), 0x80);
D_PrintHex<uint8_t > (ep_ptr->bmAttributes, 0x80);
Notify(PSTR("\r\nMaxPktSize:\t"), 0x80);
D_PrintHex<uint16_t > (ep_ptr->wMaxPacketSize, 0x80);
Notify(PSTR("\r\nPoll Intrv:\t"), 0x80);
D_PrintHex<uint8_t > (ep_ptr->bInterval, 0x80);
#endif
}
/* Performs a cleanup after failed Init() attempt */
uint8_t BTD::Release() {
clearAllVariables(); // Set all variables, endpoint structs etc. to default values
pUsb->GetAddressPool().FreeAddress(bAddress);
return 0;
}
uint8_t BTD::Poll() {
if (!bPollEnable)
return 0;
if (qNextPollTime <= millis()) { // Don't poll if shorter than polling interval
qNextPollTime = millis() + pollInterval; // Set new poll time
HCI_event_task(); // poll the HCI event pipe
ACL_event_task(); // start polling the ACL input pipe too, though discard data until connected
}
return 0;
}
void BTD::HCI_event_task() {
/* check the event pipe*/
uint16_t MAX_BUFFER_SIZE = BULK_MAXPKTSIZE; // Request more than 16 bytes anyway, the inTransfer routine will take care of this
uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_EVENT_PIPE ].epAddr, &MAX_BUFFER_SIZE, hcibuf); // input on endpoint 1
if (!rcode || rcode == hrNAK) // Check for errors
{
switch (hcibuf[0]) //switch on event type
{
case EV_COMMAND_COMPLETE:
if (!hcibuf[5]) { // Check if command succeeded
hci_event_flag |= HCI_FLAG_CMD_COMPLETE; // set command complete flag
if ((hcibuf[3] == 0x01) && (hcibuf[4] == 0x10)) { // parameters from read local version information
hci_version = hcibuf[6]; // Used to check if it supports 2.0+EDR - see http://www.bluetooth.org/Technical/AssignedNumbers/hci.htm
hci_event_flag |= HCI_FLAG_READ_VERSION;
} else if ((hcibuf[3] == 0x09) && (hcibuf[4] == 0x10)) { // parameters from read local bluetooth address
for (uint8_t i = 0; i < 6; i++)
my_bdaddr[i] = hcibuf[6 + i];
hci_event_flag |= HCI_FLAG_READ_BDADDR;
}
}
break;
case EV_COMMAND_STATUS:
if (hcibuf[2]) { // Show status on serial if not OK
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHCI Command Failed: "), 0x80);
D_PrintHex<uint8_t > (hcibuf[2], 0x80);
#endif
}
break;
case EV_INQUIRY_COMPLETE:
if (inquiry_counter >= 5 && pairWithWii) {
inquiry_counter = 0;
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nCouldn't find Wiimote"), 0x80);
#endif
connectToWii = false;
pairWithWii = false;
hci_state = HCI_SCANNING_STATE;
}
inquiry_counter++;
break;
case EV_INQUIRY_RESULT:
if (hcibuf[2]) { // Check that there is more than zero responses
#ifdef EXTRADEBUG
Notify(PSTR("\r\nNumber of responses: "), 0x80);
Notify(hcibuf[2], 0x80);
#endif
for (uint8_t i = 0; i < hcibuf[2]; i++) {
if ((hcibuf[4 + 8 * hcibuf[2] + 3 * i] == 0x04 && hcibuf[5 + 8 * hcibuf[2] + 3 * i] == 0x25 && hcibuf[6 + 8 * hcibuf[2] + 3 * i] == 0x00) || (hcibuf[4 + 8 * hcibuf[2] + 3 * i] == 0x08 && hcibuf[5 + 8 * hcibuf[2] + 3 * i] == 0x05 && hcibuf[6 + 8 * hcibuf[2] + 3 * i] == 0x00)) { // See http://bluetooth-pentest.narod.ru/software/bluetooth_class_of_device-service_generator.html and http://wiibrew.org/wiki/Wiimote#SDP_information
if (hcibuf[4 + 8 * hcibuf[2] + 3 * i] == 0x08) // Check if it's the new Wiimote with motion plus inside that was detected
motionPlusInside = true;
else
motionPlusInside = false;
disc_bdaddr[0] = hcibuf[3 + 6 * i];
disc_bdaddr[1] = hcibuf[4 + 6 * i];
disc_bdaddr[2] = hcibuf[5 + 6 * i];
disc_bdaddr[3] = hcibuf[6 + 6 * i];
disc_bdaddr[4] = hcibuf[7 + 6 * i];
disc_bdaddr[5] = hcibuf[8 + 6 * i];
hci_event_flag |= HCI_FLAG_WII_FOUND;
break;
}
#ifdef EXTRADEBUG
else {
Notify(PSTR("\r\nClass of device: "), 0x80);
D_PrintHex<uint8_t > (hcibuf[6 + 8 * hcibuf[2] + 3 * i], 0x80);
Notify(PSTR(" "), 0x80);
D_PrintHex<uint8_t > (hcibuf[5 + 8 * hcibuf[2] + 3 * i], 0x80);
Notify(PSTR(" "), 0x80);
D_PrintHex<uint8_t > (hcibuf[4 + 8 * hcibuf[2] + 3 * i], 0x80);
}
#endif
}
}
break;
case EV_CONNECT_COMPLETE:
hci_event_flag |= HCI_FLAG_CONNECT_EVENT;
if (!hcibuf[2]) { // check if connected OK
#ifdef EXTRADEBUG
Notify(PSTR("\r\nConnection established"), 0x80);
#endif
hci_handle = hcibuf[3] | ((hcibuf[4] & 0x0F) << 8); // store the handle for the ACL connection
hci_event_flag |= HCI_FLAG_CONN_COMPLETE; // set connection complete flag
} else {
hci_state = HCI_CHECK_WII_SERVICE;
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nConnection Failed: "), 0x80);
D_PrintHex<uint8_t > (hcibuf[2], 0x80);
#endif
}
break;
case EV_DISCONNECT_COMPLETE:
if (!hcibuf[2]) { // check if disconnected OK
hci_event_flag |= HCI_FLAG_DISCONN_COMPLETE; // set disconnect command complete flag
hci_event_flag &= ~HCI_FLAG_CONN_COMPLETE; // clear connection complete flag
}
break;
case EV_REMOTE_NAME_COMPLETE:
if (!hcibuf[2]) { // check if reading is OK
for (uint8_t i = 0; i < min(sizeof (remote_name), sizeof (hcibuf) - 9); i++)
remote_name[i] = hcibuf[9 + i];
hci_event_flag |= HCI_FLAG_REMOTE_NAME_COMPLETE;
}
break;
case EV_INCOMING_CONNECT:
disc_bdaddr[0] = hcibuf[2];
disc_bdaddr[1] = hcibuf[3];
disc_bdaddr[2] = hcibuf[4];
disc_bdaddr[3] = hcibuf[5];
disc_bdaddr[4] = hcibuf[6];
disc_bdaddr[5] = hcibuf[7];
#ifdef EXTRADEBUG
Notify(PSTR("\r\nClass of device: "), 0x80);
D_PrintHex<uint8_t > (hcibuf[10], 0x80);
Notify(PSTR(" "), 0x80);
D_PrintHex<uint8_t > (hcibuf[9], 0x80);
Notify(PSTR(" "), 0x80);
D_PrintHex<uint8_t > (hcibuf[8], 0x80);
#endif
hci_event_flag |= HCI_FLAG_INCOMING_REQUEST;
break;
case EV_PIN_CODE_REQUEST:
if (pairWithWii) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nPairing with wiimote"), 0x80);
#endif
hci_pin_code_request_reply();
} else if (btdPin != NULL) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nBluetooth pin is set too: "), 0x80);
NotifyStr(btdPin, 0x80);
#endif
hci_pin_code_request_reply();
} else {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nNo pin was set"), 0x80);
#endif
hci_pin_code_negative_request_reply();
}
break;
case EV_LINK_KEY_REQUEST:
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nReceived Key Request"), 0x80);
#endif
hci_link_key_request_negative_reply();
break;
case EV_AUTHENTICATION_COMPLETE:
if (pairWithWii && !connectToWii) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nPairing successful"), 0x80);
#endif
connectToWii = true; // Only send the ACL data to the Wii service
}
break;
/* We will just ignore the following events */
case EV_NUM_COMPLETE_PKT:
case EV_ROLE_CHANGED:
case EV_PAGE_SCAN_REP_MODE:
case EV_LOOPBACK_COMMAND:
case EV_DATA_BUFFER_OVERFLOW:
case EV_CHANGE_CONNECTION_LINK:
case EV_MAX_SLOTS_CHANGE:
case EV_QOS_SETUP_COMPLETE:
case EV_LINK_KEY_NOTIFICATION:
case EV_ENCRYPTION_CHANGE:
case EV_READ_REMOTE_VERSION_INFORMATION_COMPLETE:
break;
#ifdef EXTRADEBUG
default:
if (hcibuf[0] != 0x00) {
Notify(PSTR("\r\nUnmanaged HCI Event: "), 0x80);
D_PrintHex<uint8_t > (hcibuf[0], 0x80);
}
break;
#endif
} // switch
}
#ifdef EXTRADEBUG
else {
Notify(PSTR("\r\nHCI event error: "), 0x80);
D_PrintHex<uint8_t > (rcode, 0x80);
}
#endif
HCI_task();
}
/* Poll Bluetooth and print result */
void BTD::HCI_task() {
switch (hci_state) {
case HCI_INIT_STATE:
hci_counter++;
if (hci_counter > hci_num_reset_loops) { // wait until we have looped x times to clear any old events
hci_reset();
hci_state = HCI_RESET_STATE;
hci_counter = 0;
}
break;
case HCI_RESET_STATE:
hci_counter++;
if (hci_cmd_complete) {
hci_counter = 0;
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHCI Reset complete"), 0x80);
#endif
hci_state = HCI_CLASS_STATE;
hci_write_class_of_device();
} else if (hci_counter > hci_num_reset_loops) {
hci_num_reset_loops *= 10;
if (hci_num_reset_loops > 2000)
hci_num_reset_loops = 2000;
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nNo response to HCI Reset"), 0x80);
#endif
hci_state = HCI_INIT_STATE;
hci_counter = 0;
}
break;
case HCI_CLASS_STATE:
if (hci_cmd_complete) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nWrite class of device"), 0x80);
#endif
hci_state = HCI_BDADDR_STATE;
hci_read_bdaddr();
}
break;
case HCI_BDADDR_STATE:
if (hci_read_bdaddr_complete) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nLocal Bluetooth Address: "), 0x80);
for (int8_t i = 5; i > 0; i--) {
D_PrintHex<uint8_t > (my_bdaddr[i], 0x80);
Notify(PSTR(":"), 0x80);
}
D_PrintHex<uint8_t > (my_bdaddr[0], 0x80);
#endif
hci_read_local_version_information();
hci_state = HCI_LOCAL_VERSION_STATE;
}
break;
case HCI_LOCAL_VERSION_STATE: // The local version is used by the PS3BT class
if (hci_read_version_complete) {
if (btdName != NULL) {
hci_set_local_name(btdName);
hci_state = HCI_SET_NAME_STATE;
} else
hci_state = HCI_CHECK_WII_SERVICE;
}
break;
case HCI_SET_NAME_STATE:
if (hci_cmd_complete) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nThe name is set to: "), 0x80);
NotifyStr(btdName, 0x80);
#endif
hci_state = HCI_CHECK_WII_SERVICE;
}
break;
case HCI_CHECK_WII_SERVICE:
if (pairWithWii) { // Check if it should try to connect to a wiimote
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nStarting inquiry\r\nPress 1 & 2 on the Wiimote\r\nOr press sync if you are using a Wii U Pro Controller"), 0x80);
#endif
hci_inquiry();
hci_state = HCI_INQUIRY_STATE;
} else
hci_state = HCI_SCANNING_STATE; // Don't try to connect to a Wiimote
break;
case HCI_INQUIRY_STATE:
if (hci_wii_found) {
hci_inquiry_cancel(); // Stop inquiry
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nWiimote found"), 0x80);
Notify(PSTR("\r\nNow just create the instance like so:"), 0x80);
Notify(PSTR("\r\nWII Wii(&Btd);"), 0x80);
Notify(PSTR("\r\nAnd then press any button on the Wiimote"), 0x80);
#endif
if (motionPlusInside) {
hci_remote_name(); // We need to know the name to distinguish between a Wiimote and a Wii U Pro Controller
hci_state = HCI_REMOTE_NAME_STATE;
} else
hci_state = HCI_CONNECT_WII_STATE;
}
break;
case HCI_CONNECT_WII_STATE:
if (hci_cmd_complete) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nConnecting to Wiimote"), 0x80);
#endif
hci_connect();
hci_state = HCI_CONNECTED_WII_STATE;
}
break;
case HCI_CONNECTED_WII_STATE:
if (hci_connect_event) {
if (hci_connect_complete) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nConnected to Wiimote"), 0x80);
#endif
hci_authentication_request(); // This will start the pairing with the wiimote
hci_state = HCI_SCANNING_STATE;
} else {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nTrying to connect one more time..."), 0x80);
#endif
hci_connect(); // Try to connect one more time
}
}
break;
case HCI_SCANNING_STATE:
if (!connectToWii && !pairWithWii) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nWait For Incoming Connection Request"), 0x80);
#endif
hci_write_scan_enable();
watingForConnection = true;
hci_state = HCI_CONNECT_IN_STATE;
}
break;
case HCI_CONNECT_IN_STATE:
if (hci_incoming_connect_request) {
watingForConnection = false;
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nIncoming Connection Request"), 0x80);
#endif
hci_remote_name();
hci_state = HCI_REMOTE_NAME_STATE;
} else if (hci_disconnect_complete)
hci_state = HCI_DISCONNECT_STATE;
break;
case HCI_REMOTE_NAME_STATE:
if (hci_remote_name_complete) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nRemote Name: "), 0x80);
for (uint8_t i = 0; i < 30; i++) {
if (remote_name[i] == NULL)
break;
Notifyc(remote_name[i], 0x80);
}
#endif
if (strncmp((const char*)remote_name, "Nintendo", 8) == 0) {
incomingWii = true;
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nWiimote is connecting"), 0x80);
#endif
if (strncmp((const char*)remote_name, "Nintendo RVL-CNT-01-TR", 22) == 0) {
#ifdef DEBUG_USB_HOST
Notify(PSTR(" with Motion Plus Inside"), 0x80);
#endif
motionPlusInside = true;
} else if (strncmp((const char*)remote_name, "Nintendo RVL-CNT-01-UC", 22) == 0) {
#ifdef DEBUG_USB_HOST
Notify(PSTR(" - Wii U Pro Controller"), 0x80);
#endif
motionPlusInside = true;
wiiUProController = true;
} else {
motionPlusInside = false;
wiiUProController = false;
}
}
if (pairWithWii && motionPlusInside)
hci_state = HCI_CONNECT_WII_STATE;
else {
hci_accept_connection();
hci_state = HCI_CONNECTED_STATE;
}
}
break;
case HCI_CONNECTED_STATE:
if (hci_connect_complete) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nConnected to Device: "), 0x80);
for (int8_t i = 5; i > 0; i--) {
D_PrintHex<uint8_t > (disc_bdaddr[i], 0x80);
Notify(PSTR(":"), 0x80);
}
D_PrintHex<uint8_t > (disc_bdaddr[0], 0x80);
#endif
// Clear these flags for a new connection
l2capConnectionClaimed = false;
sdpConnectionClaimed = false;
rfcommConnectionClaimed = false;
hci_event_flag = 0;
hci_state = HCI_DONE_STATE;
}
break;
case HCI_DONE_STATE:
hci_counter++;
if (hci_counter > 1000) { // Wait until we have looped 1000 times to make sure that the L2CAP connection has been started
hci_counter = 0;
hci_state = HCI_SCANNING_STATE;
}
break;
case HCI_DISCONNECT_STATE:
if (hci_disconnect_complete) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nHCI Disconnected from Device"), 0x80);
#endif
hci_event_flag = 0; // Clear all flags
// Reset all buffers
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
hcibuf[i] = 0;
for (uint8_t i = 0; i < BULK_MAXPKTSIZE; i++)
l2capinbuf[i] = 0;
connectToWii = false;
incomingWii = false;
pairWithWii = false;
hci_state = HCI_SCANNING_STATE;
}
break;
default:
break;
}
}
void BTD::ACL_event_task() {
uint16_t MAX_BUFFER_SIZE = BULK_MAXPKTSIZE;
uint8_t rcode = pUsb->inTransfer(bAddress, epInfo[ BTD_DATAIN_PIPE ].epAddr, &MAX_BUFFER_SIZE, l2capinbuf); // input on endpoint 2
if (!rcode) { // Check for errors
for (uint8_t i = 0; i < BTD_NUMSERVICES; i++)
if (btService[i])
btService[i]->ACLData(l2capinbuf);
}
#ifdef EXTRADEBUG
else if (rcode != hrNAK) {
Notify(PSTR("\r\nACL data in error: "), 0x80);
D_PrintHex<uint8_t > (rcode, 0x80);
}
#endif
for (uint8_t i = 0; i < BTD_NUMSERVICES; i++)
if (btService[i])
btService[i]->Run();
}
/************************************************************/
/* HCI Commands */
/************************************************************/
void BTD::HCI_Command(uint8_t* data, uint16_t nbytes) {
hci_event_flag &= ~HCI_FLAG_CMD_COMPLETE;
pUsb->ctrlReq(bAddress, epInfo[ BTD_CONTROL_PIPE ].epAddr, bmREQ_HCI_OUT, 0x00, 0x00, 0x00, 0x00, nbytes, nbytes, data, NULL);
}
void BTD::hci_reset() {
hci_event_flag = 0; // Clear all the flags
hcibuf[0] = 0x03; // HCI OCF = 3
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x00;
HCI_Command(hcibuf, 3);
}
void BTD::hci_write_scan_enable() {
hci_event_flag &= ~HCI_FLAG_INCOMING_REQUEST;
hcibuf[0] = 0x1A; // HCI OCF = 1A
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x01; // parameter length = 1
if (btdName != NULL)
hcibuf[3] = 0x03; // Inquiry Scan enabled. Page Scan enabled.
else
hcibuf[3] = 0x02; // Inquiry Scan disabled. Page Scan enabled.
HCI_Command(hcibuf, 4);
}
void BTD::hci_write_scan_disable() {
hcibuf[0] = 0x1A; // HCI OCF = 1A
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x01; // parameter length = 1
hcibuf[3] = 0x00; // Inquiry Scan disabled. Page Scan disabled.
HCI_Command(hcibuf, 4);
}
void BTD::hci_read_bdaddr() {
hcibuf[0] = 0x09; // HCI OCF = 9
hcibuf[1] = 0x04 << 2; // HCI OGF = 4
hcibuf[2] = 0x00;
HCI_Command(hcibuf, 3);
}
void BTD::hci_read_local_version_information() {
hcibuf[0] = 0x01; // HCI OCF = 1
hcibuf[1] = 0x04 << 2; // HCI OGF = 4
hcibuf[2] = 0x00;
HCI_Command(hcibuf, 3);
}
void BTD::hci_accept_connection() {
hci_event_flag &= ~HCI_FLAG_CONN_COMPLETE;
hcibuf[0] = 0x09; // HCI OCF = 9
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x07; // parameter length 7
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = 0x00; //switch role to master
HCI_Command(hcibuf, 10);
}
void BTD::hci_remote_name() {
hci_event_flag &= ~HCI_FLAG_REMOTE_NAME_COMPLETE;
hcibuf[0] = 0x19; // HCI OCF = 19
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x0A; // parameter length = 10
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
hcibuf[9] = 0x01; //Page Scan Repetition Mode
hcibuf[10] = 0x00; //Reserved
hcibuf[11] = 0x00; //Clock offset - low byte
hcibuf[12] = 0x00; //Clock offset - high byte
HCI_Command(hcibuf, 13);
}
void BTD::hci_set_local_name(const char* name) {
hcibuf[0] = 0x13; // HCI OCF = 13
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = strlen(name) + 1; // parameter length = the length of the string + end byte
uint8_t i;
for (i = 0; i < strlen(name); i++)
hcibuf[i + 3] = name[i];
hcibuf[i + 3] = 0x00; // End of string
HCI_Command(hcibuf, 4 + strlen(name));
}
void BTD::hci_inquiry() {
hci_event_flag &= ~HCI_FLAG_WII_FOUND;
hcibuf[0] = 0x01;
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x05; // Parameter Total Length = 5
hcibuf[3] = 0x33; // LAP: Genera/Unlimited Inquiry Access Code (GIAC = 0x9E8B33) - see https://www.bluetooth.org/Technical/AssignedNumbers/baseband.htm
hcibuf[4] = 0x8B;
hcibuf[5] = 0x9E;
hcibuf[6] = 0x30; // Inquiry time = 61.44 sec (maximum)
hcibuf[7] = 0x0A; // 10 number of responses
HCI_Command(hcibuf, 8);
}
void BTD::hci_inquiry_cancel() {
hcibuf[0] = 0x02;
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x00; // Parameter Total Length = 0
HCI_Command(hcibuf, 3);
}
void BTD::hci_connect() {
hci_connect(disc_bdaddr); // Use last discovered device
}
void BTD::hci_connect(uint8_t *bdaddr) {
hci_event_flag &= ~(HCI_FLAG_CONN_COMPLETE | HCI_FLAG_CONNECT_EVENT);
hcibuf[0] = 0x05;
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x0D; // parameter Total Length = 13
hcibuf[3] = bdaddr[0]; // 6 octet bdaddr (LSB)
hcibuf[4] = bdaddr[1];
hcibuf[5] = bdaddr[2];
hcibuf[6] = bdaddr[3];
hcibuf[7] = bdaddr[4];
hcibuf[8] = bdaddr[5];
hcibuf[9] = 0x18; // DM1 or DH1 may be used
hcibuf[10] = 0xCC; // DM3, DH3, DM5, DH5 may be used
hcibuf[11] = 0x01; // Page repetition mode R1
hcibuf[12] = 0x00; // Reserved
hcibuf[13] = 0x00; // Clock offset
hcibuf[14] = 0x00; // Invalid clock offset
hcibuf[15] = 0x00; // Do not allow role switch
HCI_Command(hcibuf, 16);
}
void BTD::hci_pin_code_request_reply() {
hcibuf[0] = 0x0D; // HCI OCF = 0D
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x17; // parameter length 23
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
if (pairWithWii) {
hcibuf[9] = 6; // Pin length is the length of the Bluetooth address
if (wiiUProController) {
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nParing with Wii U Pro Controller"), 0x80);
#endif
for (uint8_t i = 0; i < 6; i++)
hcibuf[10 + i] = my_bdaddr[i]; // The pin is the Bluetooth dongles Bluetooth address backwards
} else {
for (uint8_t i = 0; i < 6; i++)
hcibuf[10 + i] = disc_bdaddr[i]; // The pin is the Wiimote's Bluetooth address backwards
}
for (uint8_t i = 16; i < 26; i++)
hcibuf[i] = 0x00; // The rest should be 0
} else {
hcibuf[9] = strlen(btdPin); // Length of pin
uint8_t i;
for (i = 0; i < strlen(btdPin); i++) // The maximum size of the pin is 16
hcibuf[i + 10] = btdPin[i];
for (; i < 16; i++)
hcibuf[i + 10] = 0x00; // The rest should be 0
}
HCI_Command(hcibuf, 26);
}
void BTD::hci_pin_code_negative_request_reply() {
hcibuf[0] = 0x0E; // HCI OCF = 0E
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x06; // parameter length 6
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
HCI_Command(hcibuf, 9);
}
void BTD::hci_link_key_request_negative_reply() {
hcibuf[0] = 0x0C; // HCI OCF = 0C
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x06; // parameter length 6
hcibuf[3] = disc_bdaddr[0]; // 6 octet bdaddr
hcibuf[4] = disc_bdaddr[1];
hcibuf[5] = disc_bdaddr[2];
hcibuf[6] = disc_bdaddr[3];
hcibuf[7] = disc_bdaddr[4];
hcibuf[8] = disc_bdaddr[5];
HCI_Command(hcibuf, 9);
}
void BTD::hci_authentication_request() {
hcibuf[0] = 0x11; // HCI OCF = 11
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x02; // parameter length = 2
hcibuf[3] = (uint8_t)(hci_handle & 0xFF); //connection handle - low byte
hcibuf[4] = (uint8_t)((hci_handle >> 8) & 0x0F); //connection handle - high byte
HCI_Command(hcibuf, 5);
}
void BTD::hci_disconnect(uint16_t handle) { // This is called by the different services
hci_event_flag &= ~HCI_FLAG_DISCONN_COMPLETE;
hcibuf[0] = 0x06; // HCI OCF = 6
hcibuf[1] = 0x01 << 2; // HCI OGF = 1
hcibuf[2] = 0x03; // parameter length = 3
hcibuf[3] = (uint8_t)(handle & 0xFF); //connection handle - low byte
hcibuf[4] = (uint8_t)((handle >> 8) & 0x0F); //connection handle - high byte
hcibuf[5] = 0x13; // reason
HCI_Command(hcibuf, 6);
}
void BTD::hci_write_class_of_device() { // See http://bluetooth-pentest.narod.ru/software/bluetooth_class_of_device-service_generator.html
hcibuf[0] = 0x24; // HCI OCF = 24
hcibuf[1] = 0x03 << 2; // HCI OGF = 3
hcibuf[2] = 0x03; // parameter length = 3
hcibuf[3] = 0x04; // Robot
hcibuf[4] = 0x08; // Toy
hcibuf[5] = 0x00;
HCI_Command(hcibuf, 6);
}
/*******************************************************************
* *
* HCI ACL Data Packet *
* *
* buf[0] buf[1] buf[2] buf[3]
* 0 4 8 11 12 16 24 31 MSB
* .-+-+-+-+-+-+-+-|-+-+-+-|-+-|-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
* | HCI Handle |PB |BC | Data Total Length | HCI ACL Data Packet
* .-+-+-+-+-+-+-+-|-+-+-+-|-+-|-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
*
* buf[4] buf[5] buf[6] buf[7]
* 0 8 16 31 MSB
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
* | Length | Channel ID | Basic L2CAP header
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
*
* buf[8] buf[9] buf[10] buf[11]
* 0 8 16 31 MSB
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-.
* | Code | Identifier | Length | Control frame (C-frame)
* .-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-. (signaling packet format)
*/
/************************************************************/
/* L2CAP Commands */
/************************************************************/
void BTD::L2CAP_Command(uint16_t handle, uint8_t* data, uint8_t nbytes, uint8_t channelLow, uint8_t channelHigh) {
uint8_t buf[8 + nbytes];
buf[0] = (uint8_t)(handle & 0xff); // HCI handle with PB,BC flag
buf[1] = (uint8_t)(((handle >> 8) & 0x0f) | 0x20);
buf[2] = (uint8_t)((4 + nbytes) & 0xff); // HCI ACL total data length
buf[3] = (uint8_t)((4 + nbytes) >> 8);
buf[4] = (uint8_t)(nbytes & 0xff); // L2CAP header: Length
buf[5] = (uint8_t)(nbytes >> 8);
buf[6] = channelLow;
buf[7] = channelHigh;
for (uint16_t i = 0; i < nbytes; i++) // L2CAP C-frame
buf[8 + i] = data[i];
uint8_t rcode = pUsb->outTransfer(bAddress, epInfo[ BTD_DATAOUT_PIPE ].epAddr, (8 + nbytes), buf);
if (rcode) {
delay(100); // This small delay prevents it from overflowing if it fails
#ifdef DEBUG_USB_HOST
Notify(PSTR("\r\nError sending L2CAP message: 0x"), 0x80);
D_PrintHex<uint8_t > (rcode, 0x80);
Notify(PSTR(" - Channel ID: "), 0x80);
D_PrintHex<uint8_t > (channelHigh, 0x80);
Notify(PSTR(" "), 0x80);
D_PrintHex<uint8_t > (channelLow, 0x80);
#endif
}
}
void BTD::l2cap_connection_request(uint16_t handle, uint8_t rxid, uint8_t* scid, uint16_t psm) {
l2capoutbuf[0] = L2CAP_CMD_CONNECTION_REQUEST; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x04; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = (uint8_t)(psm & 0xff); // PSM
l2capoutbuf[5] = (uint8_t)(psm >> 8);
l2capoutbuf[6] = scid[0]; // Source CID
l2capoutbuf[7] = scid[1];
L2CAP_Command(handle, l2capoutbuf, 8);
}
void BTD::l2cap_connection_response(uint16_t handle, uint8_t rxid, uint8_t* dcid, uint8_t* scid, uint8_t result) {
l2capoutbuf[0] = L2CAP_CMD_CONNECTION_RESPONSE; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x08; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0]; // Destination CID
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = scid[0]; // Source CID
l2capoutbuf[7] = scid[1];
l2capoutbuf[8] = result; // Result: Pending or Success
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x00; // No further information
l2capoutbuf[11] = 0x00;
L2CAP_Command(handle, l2capoutbuf, 12);
}
void BTD::l2cap_config_request(uint16_t handle, uint8_t rxid, uint8_t* dcid) {
l2capoutbuf[0] = L2CAP_CMD_CONFIG_REQUEST; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x08; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0]; // Destination CID
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = 0x00; // Flags
l2capoutbuf[7] = 0x00;
l2capoutbuf[8] = 0x01; // Config Opt: type = MTU (Maximum Transmission Unit) - Hint
l2capoutbuf[9] = 0x02; // Config Opt: length
l2capoutbuf[10] = 0xFF; // MTU
l2capoutbuf[11] = 0xFF;
L2CAP_Command(handle, l2capoutbuf, 12);
}
void BTD::l2cap_config_response(uint16_t handle, uint8_t rxid, uint8_t* scid) {
l2capoutbuf[0] = L2CAP_CMD_CONFIG_RESPONSE; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x0A; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = scid[0]; // Source CID
l2capoutbuf[5] = scid[1];
l2capoutbuf[6] = 0x00; // Flag
l2capoutbuf[7] = 0x00;
l2capoutbuf[8] = 0x00; // Result
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x01; // Config
l2capoutbuf[11] = 0x02;
l2capoutbuf[12] = 0xA0;
l2capoutbuf[13] = 0x02;
L2CAP_Command(handle, l2capoutbuf, 14);
}
void BTD::l2cap_disconnection_request(uint16_t handle, uint8_t rxid, uint8_t* dcid, uint8_t* scid) {
l2capoutbuf[0] = L2CAP_CMD_DISCONNECT_REQUEST; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x04; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0];
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = scid[0];
l2capoutbuf[7] = scid[1];
L2CAP_Command(handle, l2capoutbuf, 8);
}
void BTD::l2cap_disconnection_response(uint16_t handle, uint8_t rxid, uint8_t* dcid, uint8_t* scid) {
l2capoutbuf[0] = L2CAP_CMD_DISCONNECT_RESPONSE; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x04; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = dcid[0];
l2capoutbuf[5] = dcid[1];
l2capoutbuf[6] = scid[0];
l2capoutbuf[7] = scid[1];
L2CAP_Command(handle, l2capoutbuf, 8);
}
void BTD::l2cap_information_response(uint16_t handle, uint8_t rxid, uint8_t infoTypeLow, uint8_t infoTypeHigh) {
l2capoutbuf[0] = L2CAP_CMD_INFORMATION_RESPONSE; // Code
l2capoutbuf[1] = rxid; // Identifier
l2capoutbuf[2] = 0x08; // Length
l2capoutbuf[3] = 0x00;
l2capoutbuf[4] = infoTypeLow;
l2capoutbuf[5] = infoTypeHigh;
l2capoutbuf[6] = 0x00; // Result = success
l2capoutbuf[7] = 0x00; // Result = success
l2capoutbuf[8] = 0x00;
l2capoutbuf[9] = 0x00;
l2capoutbuf[10] = 0x00;
l2capoutbuf[11] = 0x00;
L2CAP_Command(handle, l2capoutbuf, 12);
}
/* PS3 Commands - only set Bluetooth address is implemented in this library */
void BTD::setBdaddr(uint8_t* bdaddr) {
/* Set the internal Bluetooth address */
uint8_t buf[8];
buf[0] = 0x01;
buf[1] = 0x00;
for (uint8_t i = 0; i < 6; i++)
buf[i + 2] = bdaddr[5 - i]; // Copy into buffer, has to be written reversed, so it is MSB first
// bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0xF5), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data
pUsb->ctrlReq(bAddress, epInfo[BTD_CONTROL_PIPE].epAddr, bmREQ_HID_OUT, HID_REQUEST_SET_REPORT, 0xF5, 0x03, 0x00, 8, 8, buf, NULL);
}
void BTD::setMoveBdaddr(uint8_t* bdaddr) {
/* Set the internal Bluetooth address */
uint8_t buf[11];
buf[0] = 0x05;
buf[7] = 0x10;
buf[8] = 0x01;
buf[9] = 0x02;
buf[10] = 0x12;
for (uint8_t i = 0; i < 6; i++)
buf[i + 1] = bdaddr[i];
// bmRequest = Host to device (0x00) | Class (0x20) | Interface (0x01) = 0x21, bRequest = Set Report (0x09), Report ID (0x05), Report Type (Feature 0x03), interface (0x00), datalength, datalength, data
pUsb->ctrlReq(bAddress, epInfo[BTD_CONTROL_PIPE].epAddr, bmREQ_HID_OUT, HID_REQUEST_SET_REPORT, 0x05, 0x03, 0x00, 11, 11, buf, NULL);
}