USB_Host_Shield_2.0/masstorage.cpp

1163 lines
41 KiB
C++
Raw Normal View History

#include "masstorage.h"
const uint8_t BulkOnly::epDataInIndex = 1;
const uint8_t BulkOnly::epDataOutIndex = 2;
const uint8_t BulkOnly::epInterruptInIndex = 3;
BulkOnly::BulkOnly(USB *p) :
pUsb(p),
bAddress(0),
bIface(0),
bNumEP(1),
qNextPollTime(0),
bPollEnable(false),
dCBWTag(0),
bLastUsbError(0) {
ClearAllEP();
dCBWTag = 0;
if (pUsb)
pUsb->RegisterDeviceClass(this);
}
void BulkOnly::ClearAllEP() {
for (uint8_t i = 0; i < MASS_MAX_ENDPOINTS; i++) {
epInfo[i].epAddr = 0;
epInfo[i].maxPktSize = (i) ? 0 : 8;
epInfo[i].epAttribs = 0;
epInfo[i].bmNakPower = USB_NAK_DEFAULT; //0; //USB_NAK_DEFAULT;
}
// clear all LUN data as well
for (uint8_t i = 0; i < MASS_MAX_SUPPORTED_LUN; i++) LUNOk[i] = false;
bIface = 0;
bNumEP = 1;
bAddress = 0;
qNextPollTime = 0;
bPollEnable = false;
bLastUsbError = 0;
bMaxLUN = 0;
bTheLUN = 0;
//dCBWTag = 100;
//dCBWTag = 1073741823;
}
boolean BulkOnly::CheckLUN(uint8_t lun) {
uint8_t rcode;
Capacity capacity;
for (uint8_t i = 0; i<sizeof (Capacity); i++) capacity.data[i] = 0;
rcode = ReadCapacity(lun, sizeof (Capacity), (uint8_t*) & capacity);
if (rcode) {
//printf(">>>>>>>>>>>>>>>>ReadCapacity returned %i\r\n", rcode);
return false;
}
ErrorMessage<uint8_t > (PSTR(">>>>>>>>>>>>>>>>CAPACITY OK ON LUN"), lun);
for (uint8_t i = 0; i<sizeof (Capacity); i++)
PrintHex<uint8_t > (capacity.data[i], 0x80);
Notify(PSTR("\r\n\r\n"), 0x80);
// Only 512/1024/2048/4096 are valid values!
uint32_t c = ((uint32_t)capacity.data[4] << 24) + ((uint32_t)capacity.data[5] << 16) + ((uint32_t)capacity.data[6] << 8) + (uint32_t)capacity.data[7];
if (c != 0x0200LU && c != 0x0400LU && c != 0x0800LU && c != 0x1000LU) {
return false;
}
// Store capacity information.
CurrentSectorSize[lun] = (uint16_t)(c & 0xFFFF);
CurrentCapacity[lun] = ((uint32_t)capacity.data[0] << 24) + ((uint32_t)capacity.data[1] << 16) + ((uint32_t)capacity.data[2] << 8) + (uint32_t)capacity.data[3];
if (CurrentCapacity[lun] == 0xffffffffLU || CurrentCapacity[lun] == 0x00LU) {
// Buggy firmware will report 0xffffffff or 0 for no media
if (CurrentCapacity[lun])
ErrorMessage<uint8_t > (PSTR(">>>>>>>>>>>>>>>>BUGGY FIRMWARE. CAPACITY FAIL ON LUN"), lun);
return false;
}
//rcode = TestUnitReady(lun);
//if (!rcode)
delay(20);
Page3F(lun);
//if (!Page3F(lun))
//if (!Page3F(lun))
if (!TestUnitReady(lun)) return true;
//LockMedia(lun, 1);
//MediaCTL(lun, 1);
//if (!TestUnitReady(lun)) return true;
return false;
}
// Scan for media change
// @Oleg -- should we scan ALL LUN, or just one at a time?
void BulkOnly::CheckMedia() {
for (uint8_t lun = 0; lun <= bMaxLUN; lun++) {
if (TestUnitReady(lun)) {
LUNOk[lun] = false;
continue;
}
if (!LUNOk[lun])
LUNOk[lun] = CheckLUN(lun);
}
#if 0
printf("}}}}}}}}}}}}}}}}STATUS ");
for (uint8_t lun = 0; lun <= bMaxLUN; lun++) {
if (LUNOk[lun])
printf("#");
else printf(".");
}
printf("\r\n");
#endif
qNextPollTime = millis() + 2000;
}
/*
* USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET == success
* We need to standardize either the rcode, or change the API to return values
* so a signal that additional actions are required can be produced.
* Some of these codes do exist already.
*
* TECHNICAL: We could do most of this code elsewhere, with the exception of checking the class instance.
* Doing so would save some program memory when using multiple drivers.
*/
uint8_t BulkOnly::ConfigureDevice(uint8_t parent, uint8_t port, bool lowspeed) {
const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR);
uint8_t buf[constBufSize];
uint8_t rcode;
UsbDevice *p = NULL;
EpInfo *oldep_ptr = NULL;
2013-05-14 17:39:42 +02:00
USBTRACE("MS ConfigureDevice\r\n");
ClearAllEP();
delay(2000);
AddressPool &addrPool = pUsb->GetAddressPool();
if (bAddress)
return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;
// <TECHNICAL>
// Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0);
if (!p) {
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
}
if (!p->epinfo) {
USBTRACE("epinfo\r\n");
return USB_ERROR_EPINFO_IS_NULL;
}
// Save old pointer to EP_RECORD of address 0
oldep_ptr = p->epinfo;
// Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence
p->epinfo = epInfo;
p->lowspeed = lowspeed;
// Get device descriptor
rcode = pUsb->getDevDescr(0, 0, constBufSize, (uint8_t*)buf);
// Restore p->epinfo
p->epinfo = oldep_ptr;
if (rcode) {
goto FailGetDevDescr;
}
// Allocate new address according to device class
bAddress = addrPool.AllocAddress(parent, false, port);
if (!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
// Extract Max Packet Size from the device descriptor
epInfo[0].maxPktSize = (uint8_t)((USB_DEVICE_DESCRIPTOR*)buf)->bMaxPacketSize0;
// Steal and abuse from epInfo structure to save on memory.
epInfo[1].epAddr = ((USB_DEVICE_DESCRIPTOR*)buf)->bNumConfigurations;
// </TECHNICAL>
return USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET;
FailGetDevDescr:
2013-05-16 22:43:51 +02:00
#ifdef DEBUG
NotifyFailGetDevDescr(rcode);
2013-05-16 22:43:51 +02:00
#endif
rcode = USB_ERROR_FailGetDevDescr;
Fail:
Release();
return rcode;
};
2013-05-14 12:45:35 +02:00
boolean BulkOnly::WriteProtected(uint8_t lun) {
return WriteOk[lun];
}
2013-05-14 12:45:35 +02:00
// Check for write protect.
2013-05-16 22:43:51 +02:00
uint8_t BulkOnly::Page3F(uint8_t lun) {
uint8_t buf[192];
for (int i = 0; i < 192; i++) {
buf[i] = 0x00;
}
2013-05-14 12:45:35 +02:00
WriteOk[lun] = true;
uint8_t rc = ModeSense(lun, 0, 0x3f, 0, 192, buf);
//if (rc) rc = ModeSense(lun, 0, 0x00, 0, 4, buf);
//if (rc) rc = ModeSense(lun, 0, 0x3f, 0, 192, buf);
if (!rc) {
2013-05-14 12:45:35 +02:00
WriteOk[lun] = ((buf[2] & 0x80) == 0);
Notify(PSTR("Mode Sense: "), 0x80);
for (int i = 0; i < 4; i++) {
PrintHex<uint8_t > (buf[i], 0x80);
Notify(PSTR(" "), 0x80);
}
2013-05-14 12:45:35 +02:00
#if 0
2013-05-16 22:43:51 +02:00
if (WriteOk[lun]) {
2013-05-14 12:45:35 +02:00
Notify(PSTR(" Writes Allowed"), 0x80);
} else {
Notify(PSTR(" Writes Denied"), 0x80);
}
#endif
Notify(PSTR("\r\n"), 0x80);
}
return rc;
}
// Bottom half of init. 0 == success.
uint8_t BulkOnly::Init(uint8_t parent, uint8_t port, bool lowspeed) {
uint8_t rcode;
uint8_t num_of_conf = epInfo[1].epAddr; // number of configurations
epInfo[1].epAddr = 0;
2013-05-14 17:39:42 +02:00
USBTRACE("MS Init\r\n");
AddressPool &addrPool = pUsb->GetAddressPool();
UsbDevice *p = addrPool.GetUsbDevicePtr(bAddress);
2013-05-16 22:43:51 +02:00
if (!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
// Assign new address to the device
delay(2000);
rcode = pUsb->setAddr(0, 0, bAddress);
if (rcode) {
p->lowspeed = false;
addrPool.FreeAddress(bAddress);
bAddress = 0;
USBTRACE2("setAddr:", rcode);
return rcode;
}
USBTRACE2("Addr:", bAddress);
p->lowspeed = false;
p = addrPool.GetUsbDevicePtr(bAddress);
if (!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed;
// Assign epInfo to epinfo pointer
rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);
if (rcode)
goto FailSetDevTblEntry;
USBTRACE2("NC:", num_of_conf);
for (uint8_t i = 0; i < num_of_conf; i++) {
ConfigDescParser< USB_CLASS_MASS_STORAGE,
MASS_SUBCLASS_SCSI,
MASS_PROTO_BBB,
CP_MASK_COMPARE_CLASS |
CP_MASK_COMPARE_SUBCLASS |
CP_MASK_COMPARE_PROTOCOL > BulkOnlyParser(this);
rcode = pUsb->getConfDescr(bAddress, 0, i, &BulkOnlyParser);
if (rcode)
goto FailGetConfDescr;
if (bNumEP > 1)
break;
} // for
if (bNumEP < 3)
return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;
// Assign epInfo to epinfo pointer
pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo);
USBTRACE("MS ConfigureDevice\r\n");
USBTRACE2("Conf:", bConfNum);
// Set Configuration Value
rcode = pUsb->setConf(bAddress, 0, bConfNum);
if (rcode)
goto FailSetConfDescr;
//Linux does a 1sec delay after this.
delay(1000);
rcode = GetMaxLUN(&bMaxLUN);
if (rcode)
goto FailGetMaxLUN;
if (bMaxLUN >= MASS_MAX_SUPPORTED_LUN) bMaxLUN = MASS_MAX_SUPPORTED_LUN - 1;
ErrorMessage<uint8_t > (PSTR("MaxLUN"), bMaxLUN);
delay(1000); // Delay a bit for slow firmware.
//bTheLUN = bMaxLUN;
for (uint8_t lun = 0; lun <= bMaxLUN; lun++) {
InquiryResponse response;
rcode = Inquiry(lun, sizeof (InquiryResponse), (uint8_t*) & response);
if (rcode) {
ErrorMessage<uint8_t > (PSTR("Inquiry"), rcode);
} else {
uint8_t tries = 0xf0;
while (rcode = TestUnitReady(lun)) {
if (rcode == 0x08) break; // break on no media, this is OK to do.
// try to lock media and spin up
if (tries > 2) {
LockMedia(lun, 1);
MediaCTL(lun, 1); // I actually have a USB stick that needs this!
} else delay(2 * (tries + 1));
tries++;
if (!tries) break;
}
if (!rcode) {
delay(1000);
LUNOk[lun] = CheckLUN(lun);
if (!LUNOk[lun]) LUNOk[lun] = CheckLUN(lun);
}
}
}
#if 0
{
bool good;
for (uint8_t i = 1; i == 0; i++) {
good = false;
CheckMedia();
for (uint8_t lun = 0; lun <= bMaxLUN; lun++) good |= LUNOk[lun];
if (good) break;
delay(118); // 255 loops =~ 30 seconds to allow for spin up, as per SCSI spec.
}
}
#else
CheckMedia();
#endif
rcode = OnInit();
if (rcode)
goto FailOnInit;
USBTRACE("MS configured\r\n\r\n");
bPollEnable = true;
//USBTRACE("Poll enabled\r\n");
return 0;
FailSetConfDescr:
2013-05-16 22:43:51 +02:00
#ifdef DEBUG
NotifyFailSetConfDescr();
goto Fail;
2013-05-16 22:43:51 +02:00
#endif
FailOnInit:
2013-05-16 22:43:51 +02:00
#ifdef DEBUG
USBTRACE("OnInit:");
goto Fail;
2013-05-16 22:43:51 +02:00
#endif
FailGetMaxLUN:
2013-05-16 22:43:51 +02:00
#ifdef DEBUG
USBTRACE("GetMaxLUN:");
goto Fail;
2013-05-16 22:43:51 +02:00
#endif
FailInvalidSectorSize:
2013-05-16 22:43:51 +02:00
#ifdef DEBUG
USBTRACE("Sector Size is NOT VALID: ");
goto Fail;
2013-05-16 22:43:51 +02:00
#endif
FailSetDevTblEntry:
2013-05-16 22:43:51 +02:00
#ifdef DEBUG
NotifyFailSetDevTblEntry();
goto Fail;
2013-05-16 22:43:51 +02:00
#endif
FailGetConfDescr:
2013-05-16 22:43:51 +02:00
#ifdef DEBUG
NotifyFailGetConfDescr();
2013-05-16 22:43:51 +02:00
#endif
Fail:
2013-05-16 22:43:51 +02:00
#ifdef DEBUG
NotifyFail(rcode);
2013-05-16 22:43:51 +02:00
#endif
Release();
return rcode;
}
uint32_t BulkOnly::GetCapacity(uint8_t lun) {
if (LUNOk[lun])
return CurrentCapacity[lun];
return 0LU;
}
uint16_t BulkOnly::GetSectorSize(uint8_t lun) {
if (LUNOk[lun])
return CurrentSectorSize[lun];
return 0U;
}
bool BulkOnly::LUNIsGood(uint8_t lun) {
return LUNOk[lun];
}
void BulkOnly::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR * pep) {
ErrorMessage<uint8_t > (PSTR("Conf.Val"), conf);
ErrorMessage<uint8_t > (PSTR("Iface Num"), iface);
ErrorMessage<uint8_t > (PSTR("Alt.Set"), alt);
bConfNum = conf;
uint8_t index;
if ((pep->bmAttributes & 0x03) == 3 && (pep->bEndpointAddress & 0x80) == 0x80)
index = epInterruptInIndex;
else
if ((pep->bmAttributes & 0x02) == 2)
index = ((pep->bEndpointAddress & 0x80) == 0x80) ? epDataInIndex : epDataOutIndex;
else
return;
// Fill in the endpoint info structure
epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F);
epInfo[index].maxPktSize = (uint8_t)pep->wMaxPacketSize;
epInfo[index].epAttribs = 0;
bNumEP++;
PrintEndpointDescriptor(pep);
}
uint8_t BulkOnly::Release() {
ClearAllEP();
pUsb->GetAddressPool().FreeAddress(bAddress);
return 0;
}
uint8_t BulkOnly::Poll() {
uint8_t rcode = 0;
if (!bPollEnable)
return 0;
if (qNextPollTime <= millis()) {
CheckMedia();
}
rcode = 0;
return rcode;
}
uint8_t BulkOnly::GetMaxLUN(uint8_t *plun) {
uint8_t ret = pUsb->ctrlReq(bAddress, 0, bmREQ_MASSIN, MASS_REQ_GET_MAX_LUN, 0, 0, bIface, 1, 1, plun, NULL);
if (ret == hrSTALL)
*plun = 0;
return 0;
}
uint8_t BulkOnly::ClearEpHalt(uint8_t index) {
if (index == 0)
return 0;
uint8_t ret = 0;
2013-05-16 22:43:51 +02:00
while (ret = (pUsb->ctrlReq(bAddress, 0, USB_SETUP_HOST_TO_DEVICE | USB_SETUP_TYPE_STANDARD | USB_SETUP_RECIPIENT_ENDPOINT,
USB_REQUEST_CLEAR_FEATURE, USB_FEATURE_ENDPOINT_HALT, 0, ((index == epDataInIndex) ? (0x80 | epInfo[index].epAddr) : epInfo[index].epAddr), 0, 0, NULL, NULL))
== 0x01) delay(6);
if (ret) {
ErrorMessage<uint8_t > (PSTR("ClearEpHalt"), ret);
ErrorMessage<uint8_t > (PSTR("EP"), ((index == epDataInIndex) ? (0x80 | epInfo[index].epAddr) : epInfo[index].epAddr));
return ret;
}
epInfo[index].bmSndToggle = 0;
epInfo[index].bmRcvToggle = 0;
2013-05-16 22:43:51 +02:00
// epAttribs = 0;
return 0;
}
uint8_t BulkOnly::Reset() {
uint8_t r;
while (pUsb->ctrlReq(bAddress, 0, bmREQ_MASSOUT, MASS_REQ_BOMSR, 0, 0, bIface, 0, 0, NULL, NULL) == 0x01) delay(6);
#if 0
if (r) {
printf("Reset error %2.2X\r\n", r);
}
#endif
return r;
}
2013-05-16 22:43:51 +02:00
uint8_t BulkOnly::ResetRecovery() {
Notify(PSTR("\r\nResetRecovery\r\n"), 0x80);
Notify(PSTR("-----------------\r\n"), 0x80);
#if 0
bLastUsbError = Reset();
if (bLastUsbError) {
return bLastUsbError;
}
delay(6);
bLastUsbError = ClearEpHalt(epDataInIndex);
if (bLastUsbError) {
return bLastUsbError;
}
delay(6);
bLastUsbError = ClearEpHalt(epDataOutIndex);
#else
delay(6);
Reset();
delay(6);
ClearEpHalt(epDataInIndex);
delay(6);
bLastUsbError = ClearEpHalt(epDataOutIndex);
#endif
delay(6);
return bLastUsbError;
}
#if 0
// TO-DO: Unify CBW creation as much as possible.
// Make and submit CBW.
// if stalled, delay retry
// exit on 100 retries, or anything except stall.
uint8_t SubmitCBW(uint8_t cmd, uint8_t cmdsz, uint8_t lun, uint16_t bsize, uint8_t *buf, uint8_t flags) {
CommandBlockWrapper cbw;
SetCurLUN(lun);
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = ++dCBWTag;
cbw.dCBWDataTransferLength = bsize;
cbw.bmCBWFlags = flags;
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = cmdsz;
for (uint8_t i = 0; i < 16; i++) cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = cmd;
cbw.CBWCB[1] = lun << 5;
cbw.CBWCB[4] = bsize;
}
#endif
// don't test if OK
uint8_t BulkOnly::Inquiry(uint8_t lun, uint16_t bsize, uint8_t *buf) {
Notify(PSTR("\r\nInquiry\r\n"), 0x80);
Notify(PSTR("---------\r\n"), 0x80);
CommandBlockWrapper cbw;
SetCurLUN(lun);
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = ++dCBWTag;
cbw.dCBWDataTransferLength = bsize;
cbw.bmCBWFlags = MASS_CMD_DIR_IN;
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 6;
for (uint8_t i = 0; i < 16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_INQUIRY;
cbw.CBWCB[1] = lun << 5;
cbw.CBWCB[4] = bsize;
uint8_t rc = HandleSCSIError(Transaction(&cbw, bsize, buf, 0));
#if 0
if (!rc) {
printf("LUN %i `", lun);
for (int i = 8; i < 36; i++) printf("%c", buf[i]);
printf("'\r\nQualifier %1.1X ", (buf[0]&0xE0) >> 5);
printf("Device type %2.2X ", buf[0]&0x1f);
printf("RMB %1.1X ", buf[1]&0x80 >> 7);
printf("SSCS% 1.1X ", buf[5]&0x80 >> 7);
uint8_t sv = buf[2];
printf("SCSI version %2.2X\r\nDevice conforms to ", sv);
switch (sv) {
case 0:
printf("No specific");
break;
/*
case 1:
printf("");
break;
*/
case 2:
printf("ANSI 2");
break;
case 3:
printf("ANSI INCITS 301-1997 (SPC)");
break;
case 4:
printf("ANSI INCITS 351-2001 (SPC-2)");
break;
case 5:
printf("ANSI INCITS 408-2005 (SPC-4)");
break;
case 6:
printf("T10/1731-D (SPC-4)");
break;
default:
printf("unknown");
}
printf(" standards.\r\n");
}
#endif
return rc;
}
uint8_t BulkOnly::LockMedia(uint8_t lun, uint8_t lock) {
Notify(PSTR("\r\nLockMedia\r\n"), 0x80);
Notify(PSTR("---------\r\n"), 0x80);
CommandBlockWrapper cbw;
SetCurLUN(lun);
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = ++dCBWTag;
cbw.dCBWDataTransferLength = 0;
cbw.bmCBWFlags = MASS_CMD_DIR_IN;
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 6;
for (uint8_t i = 0; i < 16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_PREVENT_REMOVAL;
//cbw.CBWCB[1] = lun << 5;
cbw.CBWCB[4] = lock;
return (HandleSCSIError(Transaction(&cbw, 0, NULL, 0)));
}
// don't test if OK, only for use internally.
uint8_t BulkOnly::RequestSense(uint8_t lun, uint16_t size, uint8_t *buf) {
Notify(PSTR("\r\nRequestSense\r\n"), 0x80);
Notify(PSTR("----------------\r\n"), 0x80);
CommandBlockWrapper cbw;
SetCurLUN(lun);
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = ++dCBWTag;
cbw.dCBWDataTransferLength = size;
cbw.bmCBWFlags = MASS_CMD_DIR_IN;
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 6;
for (uint8_t i = 0; i < 16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_REQUEST_SENSE;
cbw.CBWCB[1] = lun << 5;
cbw.CBWCB[4] = size;
return Transaction(&cbw, size, buf, 0);
}
uint8_t BulkOnly::ReadCapacity(uint8_t lun, uint16_t bsize, uint8_t *buf) {
Notify(PSTR("\r\nReadCapacity\r\n"), 0x80);
Notify(PSTR("---------------\r\n"), 0x80);
CommandBlockWrapper cbw;
SetCurLUN(lun);
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = ++dCBWTag;
cbw.dCBWDataTransferLength = bsize;
cbw.bmCBWFlags = MASS_CMD_DIR_IN;
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 10;
for (uint8_t i = 0; i < 16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_READ_CAPACITY_10;
cbw.CBWCB[1] = lun << 5;
return HandleSCSIError(Transaction(&cbw, bsize, buf, 0));
}
// don't test if OK
uint8_t BulkOnly::TestUnitReady(uint8_t lun) {
SetCurLUN(lun);
if (!bAddress)
return MASS_ERR_UNIT_NOT_READY;
Notify(PSTR("\r\nTestUnitReady\r\n"), 0x80);
Notify(PSTR("-----------------\r\n"), 0x80);
CommandBlockWrapper cbw;
uint8_t rc;
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = ++dCBWTag;
cbw.dCBWDataTransferLength = 0;
cbw.bmCBWFlags = MASS_CMD_DIR_OUT;
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 6;
for (uint8_t i = 0; i < 16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_TEST_UNIT_READY;
cbw.CBWCB[1] = lun;
rc = HandleSCSIError(Transaction(&cbw, 0, NULL, 0));
return (rc);
}
/* Media control: 0x00 Stop Motor, 0x01 Start Motor, 0x02 Eject Media, 0x03 Load Media */
// don't test if OK
uint8_t BulkOnly::MediaCTL(uint8_t lun, uint8_t ctl) {
Notify(PSTR("\r\nMediaCTL\r\n"), 0x80);
Notify(PSTR("-----------------\r\n"), 0x80);
SetCurLUN(lun);
uint8_t rcode = MASS_ERR_UNIT_NOT_READY;
if (bAddress) {
CommandBlockWrapper cbw;
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = ++dCBWTag;
cbw.dCBWDataTransferLength = 0;
cbw.bmCBWFlags = MASS_CMD_DIR_OUT;
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 6;
for (uint8_t i = 0; i < 16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_START_STOP_UNIT;
cbw.CBWCB[1] = lun << 5;
cbw.CBWCB[4] = ctl & 0x03;
rcode = HandleSCSIError(Transaction(&cbw, 0, NULL, 0));
}
return rcode;
}
uint8_t BulkOnly::Read(uint8_t lun, uint32_t addr, uint16_t bsize, uint8_t blocks, uint8_t *buf) {
if (!LUNOk[lun]) return MASS_ERR_NO_MEDIA;
Notify(PSTR("\r\nRead LUN:\t"), 0x80);
PrintHex<uint8_t > (lun, 0x90);
//printf("LUN=%i LBA=%8.8X BLOCKS=%i SIZE=%i\r\n", lun, addr, blocks, bsize);
Notify(PSTR("\r\nLBA:\t\t"), 0x90);
PrintHex<uint32_t > (addr, 0x90);
Notify(PSTR("\r\nblocks:\t\t"), 0x90);
PrintHex<uint8_t > (blocks, 0x90);
Notify(PSTR("\r\nblock size:\t"), 0x90);
PrintHex<uint16_t > (bsize, 0x90);
Notify(PSTR("\r\n---------\r\n"), 0x80);
CommandBlockWrapper cbw;
again:
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWDataTransferLength = ((uint32_t)bsize * blocks);
cbw.bmCBWFlags = MASS_CMD_DIR_IN;
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 10;
for (uint8_t i = 0; i < 16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_READ_10;
cbw.CBWCB[1] = lun << 5;
cbw.CBWCB[2] = ((addr >> 24) & 0xff);
cbw.CBWCB[3] = ((addr >> 16) & 0xff);
cbw.CBWCB[4] = ((addr >> 8) & 0xff);
cbw.CBWCB[5] = (addr & 0xff);
cbw.CBWCB[8] = blocks;
cbw.dCBWTag = ++dCBWTag;
SetCurLUN(lun);
uint8_t er = HandleSCSIError(Transaction(&cbw, bsize, buf, 0));
if (er == MASS_ERR_STALL) {
MediaCTL(lun, 1);
delay(150);
if (!TestUnitReady(lun)) goto again;
}
return er;
}
/* We won't be needing this... */
uint8_t BulkOnly::Read(uint8_t lun, uint32_t addr, uint16_t bsize, uint8_t blocks, USBReadParser * prs) {
if (!LUNOk[lun]) return MASS_ERR_NO_MEDIA;
#if 0
Notify(PSTR("\r\nRead (With parser)\r\n"), 0x80);
Notify(PSTR("---------\r\n"), 0x80);
CommandBlockWrapper cbw;
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = ++dCBWTag;
cbw.dCBWDataTransferLength = ((uint32_t)bsize * blocks);
cbw.bmCBWFlags = MASS_CMD_DIR_IN,
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 10;
for (uint8_t i = 0; i < 16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_READ_10;
cbw.CBWCB[8] = blocks;
cbw.CBWCB[2] = ((addr >> 24) & 0xff);
cbw.CBWCB[3] = ((addr >> 16) & 0xff);
cbw.CBWCB[4] = ((addr >> 8) & 0xff);
cbw.CBWCB[5] = (addr & 0xff);
return HandleSCSIError(Transaction(&cbw, bsize, prs, 1));
#endif
}
uint8_t BulkOnly::Write(uint8_t lun, uint32_t addr, uint16_t bsize, uint8_t blocks, const uint8_t * buf) {
if (!LUNOk[lun]) return MASS_ERR_NO_MEDIA;
2013-05-16 22:43:51 +02:00
if (!WriteOk[lun]) return MASS_ERR_WRITE_PROTECTED;
Notify(PSTR("\r\nWrite LUN:\t"), 0x80);
PrintHex<uint8_t > (lun, 0x90);
//printf("LUN=%i LBA=%8.8X BLOCKS=%i SIZE=%i\r\n", lun, addr, blocks, bsize);
Notify(PSTR("\r\nLBA:\t\t"), 0x90);
PrintHex<uint32_t > (addr, 0x90);
Notify(PSTR("\r\nblocks:\t\t"), 0x90);
PrintHex<uint8_t > (blocks, 0x90);
Notify(PSTR("\r\nblock size:\t"), 0x90);
PrintHex<uint16_t > (bsize, 0x90);
Notify(PSTR("\r\n---------\r\n"), 0x80);
//MediaCTL(lun, 0x01);
CommandBlockWrapper cbw;
again:
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = ++dCBWTag;
cbw.dCBWDataTransferLength = ((uint32_t)bsize * blocks);
cbw.bmCBWFlags = MASS_CMD_DIR_OUT;
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 10;
for (uint8_t i = 0; i < 16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_WRITE_10;
cbw.CBWCB[1] = lun << 5;
cbw.CBWCB[2] = ((addr >> 24) & 0xff);
cbw.CBWCB[3] = ((addr >> 16) & 0xff);
cbw.CBWCB[4] = ((addr >> 8) & 0xff);
cbw.CBWCB[5] = (addr & 0xff);
cbw.CBWCB[8] = 1;
SetCurLUN(lun);
uint8_t er = HandleSCSIError(Transaction(&cbw, bsize, (void*)buf, 0));
if (er == MASS_ERR_WRITE_STALL) {
MediaCTL(lun, 1);
delay(150);
if (!TestUnitReady(lun)) goto again;
}
return er;
}
// don't test if OK
uint8_t BulkOnly::ModeSense(uint8_t lun, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t len, uint8_t * pbuf) {
Notify(PSTR("\r\rModeSense\r\n"), 0x80);
Notify(PSTR("------------\r\n"), 0x80);
CommandBlockWrapper cbw;
SetCurLUN(lun);
cbw.dCBWSignature = MASS_CBW_SIGNATURE;
cbw.dCBWTag = ++dCBWTag;
cbw.dCBWDataTransferLength = ((uint32_t)len);
cbw.bmCBWFlags = MASS_CMD_DIR_IN;
cbw.bmCBWLUN = lun;
cbw.bmCBWCBLength = 6;
for (uint8_t i = 0; i < 16; i++)
cbw.CBWCB[i] = 0;
cbw.CBWCB[0] = SCSI_CMD_MODE_SENSE_6;
cbw.CBWCB[2] = ((pc << 6) | page);
cbw.CBWCB[3] = subpage;
cbw.CBWCB[4] = len;
return HandleSCSIError(Transaction(&cbw, 512, pbuf, 0));
}
bool BulkOnly::IsValidCSW(CommandStatusWrapper *pcsw, CommandBlockWrapperBase *pcbw) {
if (pcsw->dCSWSignature != MASS_CSW_SIGNATURE) {
Notify(PSTR("CSW:Sig error\r\n"), 0x80);
//printf("%lx != %lx\r\n", MASS_CSW_SIGNATURE, pcsw->dCSWSignature);
return false;
}
if (pcsw->dCSWTag != pcbw->dCBWTag) {
Notify(PSTR("CSW:Wrong tag\r\n"), 0x80);
//printf("%lx != %lx\r\n", pcsw->dCSWTag, pcbw->dCBWTag);
return false;
}
return true;
}
uint8_t BulkOnly::Transaction(CommandBlockWrapper *pcbw, uint16_t buf_size, void *buf, uint8_t flags) {
uint16_t bytes = (pcbw->dCBWDataTransferLength > buf_size) ? buf_size : pcbw->dCBWDataTransferLength;
boolean write = (pcbw->bmCBWFlags & MASS_CMD_DIR_IN) != MASS_CMD_DIR_IN;
boolean callback = (flags & MASS_TRANS_FLG_CALLBACK) == MASS_TRANS_FLG_CALLBACK;
uint8_t ret = 0;
uint8_t usberr;
CommandStatusWrapper csw; // up here, we allocate ahead to save cpu cycles.
// Fix reserved bits.
pcbw->bmReserved1 = 0;
pcbw->bmReserved2 = 0;
ErrorMessage<uint32_t > (PSTR("CBW.dCBWTag"), pcbw->dCBWTag);
2013-05-16 22:43:51 +02:00
while ((usberr = pUsb->outTransfer(bAddress, epInfo[epDataOutIndex].epAddr, sizeof (CommandBlockWrapper), (uint8_t*)pcbw)) == hrBUSY) delay(1);
ret = HandleUsbError(usberr, epDataOutIndex);
//ret = HandleUsbError(pUsb->outTransfer(bAddress, epInfo[epDataOutIndex].epAddr, sizeof (CommandBlockWrapper), (uint8_t*)pcbw), epDataOutIndex);
if (ret) {
ErrorMessage<uint8_t > (PSTR("============================ CBW"), ret);
} else {
if (bytes) {
if (!write) {
if (callback) {
uint8_t rbuf[bytes];
2013-05-16 22:43:51 +02:00
while ((usberr = pUsb->inTransfer(bAddress, epInfo[epDataInIndex].epAddr, &bytes, rbuf)) == hrBUSY) delay(1);
if (usberr == hrSUCCESS) ((USBReadParser*)buf)->Parse(bytes, rbuf, 0);
} else {
2013-05-16 22:43:51 +02:00
while ((usberr = pUsb->inTransfer(bAddress, epInfo[epDataInIndex].epAddr, &bytes, (uint8_t*)buf)) == hrBUSY) delay(1);
}
ret = HandleUsbError(usberr, epDataInIndex);
} else {
2013-05-16 22:43:51 +02:00
while ((usberr = pUsb->outTransfer(bAddress, epInfo[epDataOutIndex].epAddr, bytes, (uint8_t*)buf)) == hrBUSY) delay(1);
ret = HandleUsbError(usberr, epDataOutIndex);
}
if (ret) {
ErrorMessage<uint8_t > (PSTR("============================ DAT"), ret);
}
}
}
//if (!ret || ret == MASS_ERR_WRITE_STALL || ret == MASS_ERR_STALL) {
{
bytes = sizeof (CommandStatusWrapper);
int tries = 2;
while (tries--) {
2013-05-16 22:43:51 +02:00
while ((usberr = pUsb->inTransfer(bAddress, epInfo[epDataInIndex].epAddr, &bytes, (uint8_t*) & csw)) == hrBUSY) delay(1);
if (!usberr) break;
ClearEpHalt(epDataInIndex);
//HandleUsbError(usberr, epDataInIndex);
if (tries) ResetRecovery();
}
if (!ret) {
Notify(PSTR("CBW:\t\tOK\r\n"), 0x80);
Notify(PSTR("Data Stage:\tOK\r\n"), 0x80);
} else {
// Throw away csw, IT IS NOT OF ANY USE.
//HandleUsbError(usberr, epDataInIndex);
ResetRecovery();
return ret;
}
ret = HandleUsbError(usberr, epDataInIndex);
if (ret) {
ErrorMessage<uint8_t > (PSTR("============================ CSW"), ret);
}
if (usberr == hrSUCCESS) {
if (IsValidCSW(&csw, pcbw)) {
//ErrorMessage<uint32_t > (PSTR("CSW.dCBWTag"), csw.dCSWTag);
//ErrorMessage<uint8_t > (PSTR("bCSWStatus"), csw.bCSWStatus);
//ErrorMessage<uint32_t > (PSTR("dCSWDataResidue"), csw.dCSWDataResidue);
Notify(PSTR("CSW:\t\tOK\r\n\r\n"), 0x80);
return csw.bCSWStatus;
} else {
Notify(PSTR("Invalid CSW\r\n"), 0x80);
ResetRecovery();
//return MASS_ERR_SUCCESS;
return MASS_ERR_INVALID_CSW;
}
}
}
return ret;
}
uint8_t BulkOnly::SetCurLUN(uint8_t lun) {
if (lun > bMaxLUN)
return MASS_ERR_INVALID_LUN;
bTheLUN = lun;
return MASS_ERR_SUCCESS;
};
uint8_t BulkOnly::HandleUsbError(uint8_t error, uint8_t index) {
uint8_t count = 3;
bLastUsbError = error;
//if (error)
//ClearEpHalt(index);
while (error && count) {
if (error != hrSUCCESS) {
ErrorMessage<uint8_t > (PSTR("USB Error"), error);
ErrorMessage<uint8_t > (PSTR("Index"), index);
}
switch (error) {
// case hrWRONGPID:
case hrSUCCESS:
return MASS_ERR_SUCCESS;
case hrBUSY:
// SIE is busy, just hang out and try again.
return MASS_ERR_UNIT_BUSY;
case hrTIMEOUT:
case hrJERR: return MASS_ERR_DEVICE_DISCONNECTED;
case hrSTALL:
if (index == 0)
return MASS_ERR_STALL;
ClearEpHalt(index);
if (index != epDataInIndex)
return MASS_ERR_WRITE_STALL;
return MASS_ERR_STALL;
case hrNAK:
if (index == 0)
return MASS_ERR_UNIT_BUSY;
return MASS_ERR_UNIT_BUSY;
//ClearEpHalt(index);
//ResetRecovery();
//if (index != epDataInIndex)
// return MASS_ERR_WRITE_NAKS;
//return MASS_ERR_READ_NAKS;
case hrTOGERR:
if (bAddress && bConfNum) {
error = pUsb->setConf(bAddress, 0, bConfNum);
if (error)
break;
}
return MASS_ERR_SUCCESS;
default:
ErrorMessage<uint8_t > (PSTR("\r\nUSB"), error);
return MASS_ERR_GENERAL_USB_ERROR;
}
count--;
} // while
return ((error && !count) ? MASS_ERR_GENERAL_USB_ERROR : MASS_ERR_SUCCESS);
}
uint8_t BulkOnly::HandleSCSIError(uint8_t status) {
uint8_t ret = 0;
switch (status) {
case 0: return MASS_ERR_SUCCESS;
//case 4: return MASS_ERR_UNIT_BUSY; // Busy means retry later.
// case 0x05/0x14: we stalled out
// case 0x15/0x16: we naked out.
case 2:
ErrorMessage<uint8_t > (PSTR("Phase Error"), status);
ErrorMessage<uint8_t > (PSTR("LUN"), bTheLUN);
ResetRecovery();
return MASS_ERR_GENERAL_SCSI_ERROR;
case 1:
ErrorMessage<uint8_t > (PSTR("SCSI Error"), status);
ErrorMessage<uint8_t > (PSTR("LUN"), bTheLUN);
RequestSenseResponce rsp;
ret = RequestSense(bTheLUN, sizeof (RequestSenseResponce), (uint8_t*) & rsp);
if (ret) {
//ResetRecovery();
return MASS_ERR_GENERAL_SCSI_ERROR;
}
ErrorMessage<uint8_t > (PSTR("Response Code"), rsp.bResponseCode);
if (rsp.bResponseCode & 0x80) {
Notify(PSTR("Information field: "), 0x80);
for (int i = 0; i < 4; i++) {
PrintHex<uint8_t > (rsp.CmdSpecificInformation[i], 0x80);
Notify(PSTR(" "), 0x80);
}
Notify(PSTR("\r\n"), 0x80);
}
ErrorMessage<uint8_t > (PSTR("Sense Key"), rsp.bmSenseKey);
ErrorMessage<uint8_t > (PSTR("Add Sense Code"), rsp.bAdditionalSenseCode);
ErrorMessage<uint8_t > (PSTR("Add Sense Qual"), rsp.bAdditionalSenseQualifier);
// warning, this is not testing ASQ, only SK and ASC.
switch (rsp.bmSenseKey) {
/* bug...
case 0:
return MASS_ERR_SUCCESS;
*/
case SCSI_S_UNIT_ATTENTION:
switch (rsp.bAdditionalSenseCode) {
case SCSI_ASC_MEDIA_CHANGED:
return MASS_ERR_MEDIA_CHANGED;
default:
return MASS_ERR_UNIT_NOT_READY;
}
case SCSI_S_NOT_READY:
switch (rsp.bAdditionalSenseCode) {
case SCSI_ASC_MEDIUM_NOT_PRESENT:
return MASS_ERR_NO_MEDIA;
//return MASS_ERR_SUCCESS;
default:
return MASS_ERR_UNIT_NOT_READY;
}
case SCSI_S_ILLEGAL_REQUEST:
switch (rsp.bAdditionalSenseCode) {
case SCSI_ASC_LBA_OUT_OF_RANGE:
return MASS_ERR_BAD_LBA;
default:
return MASS_ERR_CMD_NOT_SUPPORTED;
}
default:
return MASS_ERR_GENERAL_SCSI_ERROR;
}
default:
// Should have been handled already in HandleUsbError.
// ResetRecovery();
ErrorMessage<uint8_t > (PSTR("Gen SCSI Err"), status);
ErrorMessage<uint8_t > (PSTR("LUN"), bTheLUN);
return status; //MASS_ERR_GENERAL_SCSI_ERROR;
} // switch
}
void BulkOnly::PrintEndpointDescriptor(const USB_ENDPOINT_DESCRIPTOR * ep_ptr) {
Notify(PSTR("Endpoint descriptor:"), 0x80);
Notify(PSTR("\r\nLength:\t\t"), 0x80);
PrintHex<uint8_t > (ep_ptr->bLength, 0x80);
Notify(PSTR("\r\nType:\t\t"), 0x80);
PrintHex<uint8_t > (ep_ptr->bDescriptorType, 0x80);
Notify(PSTR("\r\nAddress:\t"), 0x80);
PrintHex<uint8_t > (ep_ptr->bEndpointAddress, 0x80);
Notify(PSTR("\r\nAttributes:\t"), 0x80);
PrintHex<uint8_t > (ep_ptr->bmAttributes, 0x80);
Notify(PSTR("\r\nMaxPktSize:\t"), 0x80);
PrintHex<uint16_t > (ep_ptr->wMaxPacketSize, 0x80);
Notify(PSTR("\r\nPoll Intrv:\t"), 0x80);
PrintHex<uint8_t > (ep_ptr->bInterval, 0x80);
Notify(PSTR("\r\n"), 0x80);
}